Hierarchical Autoencoder Frequency Features for Stress Detection
نویسندگان
چکیده
Stress has a significant negative impact on people, which made it primary social concern. Early stress detection is essential for effective management. This study proposes Deep Learning (DL) method using multimodal physiological signals - Electrocardiogram (ECG) and Electrodermal activity (EDA). The extensive latent feature representation of DL models yet to be fully explored. Hence, this paper hierarchical autoencoder fusion the frequency domain. representations from different layers AutoEncoders(AE) are combined given as input classifier Convolutional Recurrent Neural Network with Squeeze Excitation (CRNN-SE) model. A two-set performance comparison performed (i) band features, raw data compared. (ii) autoencoders trained three cost functions Mean Squared Error (MSE), Kullback-Leibler (KL) divergence, Cosine similarity compared features data. To verify generalizability our approach, we tested four benchmark datasets- WAUC, CLAS, MAUS ASCERTAIN. Results show that showed better results than by 4-8%, respectively. MSE loss produced other losses both 3-7%, proposed approach considerably outperforms existing subject-independent 1–2%,
منابع مشابه
Novel Subband Autoencoder Features for Detection of Spoofed Speech
Deep Neural Network (DNN) have been extensively used in Automatic Speech Recognition (ASR) applications. Very recently, DNNs have also found application in detecting natural vs. spoofed speech at ASV spoof challenge held at INTERSPEECH 2015. Along the similar lines, in this work, we propose a new feature extraction architecture of DNN called the subband autoencoder (SBAE) for spoof detection ta...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولEntropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection
Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...
متن کاملA Hierarchical Classification Method for Breast Tumor Detection
Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...
متن کاملA Hierarchical Neural Autoencoder for Paragraphs and Documents
Natural language generation of coherent long texts like paragraphs or longer documents is a challenging problem for recurrent networks models. In this paper, we explore an important step toward this generation task: training an LSTM (Longshort term memory) auto-encoder to preserve and reconstruct multi-sentence paragraphs. We introduce an LSTM model that hierarchically builds an embedding for a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3316365